Comparison of Distance Measures on Fuzzyc-means Algorithm for Image Classification Problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولevaluation of dissimilarity measures for image retrieval and classification
in this paper, the performance of 11 different distances for image retrieval and classification, based on color, shape and texture, is evaluated. the precision-recall measure and the correct classification rate of the k-nn classifier are used to evaluate retrieval and classification performances, respectively. the experimental results for a database of 1000 images from 10 different semantic gro...
متن کاملClassification of brain image data using measures of distributional distance
Methods: We developed a method for classifying spatial distributions of regions of interest (ROIs) in brain images. The proposed method is based on computing the Mahalanobis distance between a new sample and datasets related to each considered class (condition). We predict that the new sample belongs to the class corresponding to the dataset that has the smaller Mahalanobis distance from the gi...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملDistance Measures for Prototype Based Classification
The basic concepts of distance based classification are introduced in terms of clear-cut example systems. The classical k-NearestNeigbhor (kNN) classifier serves as the starting point of the discussion. Learning Vector Quantization (LVQ) is introduced, which represents the reference data by a few prototypes. This requires a data driven training process; examples of heuristic and cost function b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AASRI Procedia
سال: 2013
ISSN: 2212-6716
DOI: 10.1016/j.aasri.2013.10.009